Automatic Extraction of Clusters from Hierarchical Clustering Representations1
نویسندگان
چکیده
Hierarchical clustering algorithms are typically more effective in detecting the true clustering structure of a data set than partitioning algorithms. However, hierarchical clustering algorithms do not actually create clusters, but compute only a hierarchical representation of the data set. This makes them unsuitable as an automatic pre-processing step for other algorithms that operate on detected clusters. This is true for both dendrograms and reachability plots, which have been proposed as hierarchical clustering representations, and which have different advantages and disadvantages. In this paper we first investigate the relation between dendrograms and reachability plots and introduce methods to convert them into each other showing that they essentially contain the same information. Based on reachability plots, we then introduce a technique that automatically determines the significant clusters in a hierarchical cluster representation. This makes it for the first time possible to use hierarchical clustering as an automatic pre-processing step that requires no user interaction to select clusters from a hierarchical cluster representation.
منابع مشابه
Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملAutomatic Extraction of Clusters from Hierarchical Clustering Representations
Hierarchical clustering algorithms are typically more effective in detecting the true clustering structure of a data set than partitioning algorithms. However, hierarchical clustering algorithms do not actually create clusters, but compute only a hierarchical representation of the data set. This makes them unsuitable as an automatic pre-processing step for other algorithms that operate on detec...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملAutomatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method
Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...
متن کاملChoosing the Best Hierarchical Clustering Technique Based on Principal Components Analysis for Suspended Sediment Load Estimation
1- INTRODUCTION The assessment of watershed sediment load is necessary for controling soil erosion and reducing the potential of sediment production. Different estimates of sediment amounts along with the lack of long-term measurements limits the accessibility to reliable data series of erosion rate and sediment yield. Therefore, the observed data of suspended sediment load could be used to ...
متن کامل